CHAPTER 5§

Atom—field interaction —
semiclassical theory

One of the simplest nontrivial problems involving the atom-field in-
teraction is the coupling of a two-level atom with a single mode of the
electromagnetic field. A two-level atom description is valid if the two
atomic levels involved are resonant or nearly resonant with the driving
field, while all other levels are highly detuned. Under certain realistic
approximations, it is possible to reduce this problem to a form which
can be solved exactly; allowing essential features of the atom-field
interaction to be extracted.

In this chapter we present a semiclassical theory of the interaction
of a single two-level atom with a single mode of the field in which the
atom is treated as a quantum two-level system and the field is treated
classically. A fully quantum mechanical theory will be presented in
Chapter 6.

A two-level atom is formally analogous to a spin-1/2 system
with two possible states. In the dipole approximation, when the
field wavelength is larger than the atomic size, the atom-field in-
teraction problem is mathematically equivalent to a spin-1/2 par-
ticle interacting with a time-dependent magnetic field. Just as the
spin-1/2 system undergoes the so-called Rabi oscillations between
the spin-up and spin-down states under the action of an oscillat-
ing magnetic field, the two-level atom also undergoes optical Rabi
oscillations under the action of the driving electromagnetic field.
These oscillations are damped if the atomic levels decay. An un-
derstanding of this simple model of the atom-field interaction en-
ables us to consider more complicated problems involving an ensem-
ble of atoms interacting with the field. Perhaps the most important
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example of such a problem is the laser, which we discuss later in this
chapter.”

5.1 Atom-—field interaction Hamiltonian

An electron of charge e and mass m interacting with an external
electromagnetic field is described by a minimal-coupling Hamiltonian

H = % [p—eA(r,1)]* +eU(r,t) + V(r), (5.1.1)

where p is the canonical momentum operator, A(r,t) and U(r,t) are
the vector and scalar potentials of the external field, respectively, and
V(r) is an electrostatic potential that is normally the atomic binding
potential. In this section, we first derive this Hamiltonian from a gauge
invariance point of view, before reducing it to a simple form suitable
for describing the interaction of a two-level atom with the radiation
field.

5.1.1 Local gauge (phase) invariance and
minimal-coupling Hamiltonian

The motion of a free electron is described by the Schrédinger equation

— 2 0P

leq p= &Mu (5.1.2)
such that

P(r,t) = |p(r,0) (5.13)

gives the probability density of finding an electron at position r and
time t. In Eq. (5.1.2), if (r, t) is a solution so is y1(r, 1) = p(r, t) exp(ix)
where y is an arbitrary constant phase. The probability density P(r, )
would also remain unaffected by an arbitrary choice of y. Thus the
choice of the phase of the wave function y(r, t) is completely arbitrary,
and two functions differing only by a constant phase factor represent
the same physical state.

The situation is different, however, if the phase is allowed to vary
locally, ie. to be a function of space and time variables, ie.,

P(r, 1) = p(r, 1)), (5.1.4)

* The semiclassical theory of laser behavior as developed by the schools of Lamb and Haken
(see Lamb [1963,1964] and Haken [1964]) are the pioneering treatments of the problem. Lamb
begins from the coupled Maxwell-Schrodinger equations, while Haken and co-workers take a
semiclassical (factorized) limit of quantum fields.
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The probability P(r,t) remains unaffected by this transformation, but
the Schrédinger equation (5.1.2) is no longer satisfied. If we want to
satisfy local gauge (phase) invariance, then the Schrddinger equation
must be modified by adding new terms to Eq. (5.1.2)
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where A(r,t) and U(r,t) are functions which must be inserted into
(5.1.2) if we want to be able to make the transformation (5.1.4), and
are given by

A(r,t) > A(r,0) + Wﬂﬁﬁ 1), (5.1.6)
U(r,t) - U(r,t) — WWF t). (5.1.7)

The functions A(r,t) and U(r,t) are identified as the vector and scalar
potentials of the electromagnetic field, respectively. These are the
gauge-dependent potentials. The gauge-independent quantities are the
electric and magnetic fields

E=-VU-— w|\wv (5.1.8)
B=VxA. (5.1.9)
Equation (5.1.5), which is the logical extension of Eq. (5.1.2) due to

the requirement of local gauge (phase) invariance, has the form
Hyp = ihdy/ot, (5.1.10)

with # being the minimal-coupling Hamiltonian (recall p = —iiV)
described in Eq. (5.1.1). The Schrédinger equation (5.1.5) represents
the interaction of an electron with a given electromagnetic field. The
electrons are described by the wave function (r, t) whereas the field
is described by the vector and scalar potentials A and U, respectively.

It is interesting to note that the Hamiltonian (5.1.1) has been
‘derived’ from a gauge invariance argument and is expressed in terms
of the gauge-dependent quantities A(r,t) and U(r,t). The vector and
scalar potentials have therefore a larger physical significance than is
usually attributed to them. They are not merely introduced for the
sake of mathematical simplicity in problems dealing with ‘observable’
electric and magnetic fields. Instead, they arise naturally in any gauge
(phase) invariance argument as shown above.

We also note that the Schrodinger equation plus the concept of local
gauge invariance has led us to the introduction of the electromagnetic
field. In this way, we can and do argue that the ‘photon’ (in our

148 Atom—field interaction — semiclassical theory

derivation, the classical field limit of the same) has been ‘derived’ from
the Schrodinger equation plus the local gauge invariance arguments.
We have here a taste of one of the most fundamental concepts
in modern physics, namely, that of the gauge field theory. Gauge
theory, in the hands of Steven Weinberg and Abdus Salam, led to the
unification of the weak and the electromagnetic interactions.

5.1.2 Dipole approximation and r - E Hamiltonian

We now examine the problem of an electron bound by a potential V' (r)
to a force center (nucleus) located at ro. The minimal-coupling Hamil-
tonian (5.1.1) for an interaction between an atom and the radiation
field can be reduced to a simple form by using the dipole approxi-
mation. The entire atom is immersed in a plane electromagnetic wave
described by a vector potential A(rg +r,¢). This vector potential may
be written in the dipole approximation, k- r < 1, as

A(rg +r1,t) = A(t)exp[ik - (rg +1)]
=A(t)exp(k -ro)(1 +ik-r+...)
~ A(t)exp(ik - ro). (5.1.11)

The Schrodinger equation for this problem (in the dipole approxima-
tion) is given by Eq. (5.1.5) with A(r,t) = A(ro, 1), ie.,

" i 2 op(r,
5 T|m2ab_ L V() e?:umm%, (5.1.12)

where we have added a binding potential V(r). We note that in Eq.
(5.1.12), and elsewhere in this book, we are working in the radiation
gauge, in which

Ur,t)=0, (5.1.13)
and
V-A=0. (5.1.14)

We have added the term V(r) in the Hamiltonian which arises from
the electrostatic potential that binds the electron to the nucleus.

We proceed to simplify Eq. (5.1.12) by defining a new wave function
¢(r, 1) as

w(r,t) = exp Fmi_.ov: . ; o(r, t). (5.1.15)
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Inserting Eq. (5.1.15) into Eq. (5.1.12), we find
il mﬂw - 1o(T, t) + P(r, L exp Aw_m,» . ..v
= exp Awm} . _.v TE + S*L o(r, 1) (5.1.16)

This equation, after the canceliation of the exponentiai factor and
some rearrangement, takes the simple form

ih(r,1) = [#o — er - E(ro, )] (x, ), (5.1.17)
where

#o=T L, (5.1.18)

2m

is the unperturbed Hamiltonian of the electron and we use E = —A.
Notice that the total Hamiltonian

H = Ho+ H, (5.1.19)
with

H = —er - E(ro, t), (5.1.20)

is given in terms of the gauge-independent field E. We shall use
this Hamiltonian in our subsequent studies of atom—field interaction.
Note also that this Hamiltonian has been obtained from the radiation
gauge Hamiltonian (5.1.12) by applying the gauge transformation

x(r,t) = —eA(rg,t) - r/h.

5.1.3 p- A Hamiltonian

In many textbooks one finds the atom—field Hamiltonian expressed in
terms of the canonical momentum p and the vector potential A instead
of the simple gauge invariant expression (5.1.17). This has resulted in
considerable confusion, and we therefore consider the problem in some
detail. We again choose a radiation gauge in which U(r,t) = 0 and
V- A = 0. The condition V- A = 0 implies, in quantum mechanics,
that [p, A] = 0. The total Hamiltonian (5.1.1) can, therefore, be written
as

= Ho + Hs, (5.121)

where # is given by Eq. (5.1.18) and, in the dipole approximation
(5.1.11),

H> nlle Ao, 1) + |\Sg,; (5.1.22)
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and the Schrédinger equation reads
T\oilw Z_.?:+ \»Nc.ov L w(r, Slum ec. t). (5.1.23)

The A2 term in Eq. (5.1.23) is ususally small and can be ignored. The
wave function y(r, t) then obeys the equation of motion

_.m%e:u f) = T§ - M__.Z? & w(r, b), (5.1.24)
corresponding to a Hamiltonian

H = Hy— we - A(ro, 1), (5.1.25)
and

Hy = |w= - ATo, t). (5.1.26)

The two different Hamiltonians #; and #, given in Egs. (5.1.20)
and (5.1.26), respectively, seem to give different physical results since
the matrix elements of these Hamiltonians, calculated between the
eigenstates of the unperturbed Hamiltonian 5, given by Eq. (5.1.18),
are not the same. In order to show this explicitly, we consider a linearly
polarized monochromatic plane-wave field interacting with an atom
placed at rq = 0. The electric field then takes the form

E(0,t) = &cosvt, (5.1.27)
and the corresponding vector potential in the radiation gauge is
A(0,t) = IW% sin vt. (5.1.28)

Consider now the time-independent amplitudes associated with #;
and # 2,

Wy =—er- 8, (5.1.292)
[

We may relate W, and W, by noting that
p=mv=—m @ [, #o). (5.1.30)

We then find for the matrix elements of W; and W,, calculated
between an initial eigenstate |i) of # (with #y|i) = hwli)) and a
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final eigenstate |f) (with #|f) = hwy|f)), the ratio

_ q_ﬁs|@\s:q____~.v.%
(fIW1li) e(fIrli) - &

=2 (5.1.31)

v

where w = wy — w; is the transition frequency. Hence, the matrix
elements of the two interaction Hamiltonians #; and 5, differ by
the ratio of the transition frequency over the field frequency. As was
first pointed out by Lamb, this makes a difference in measurable
quantities like transition rates. We present a resolution of this in
Appendix 5.A.

5.2 Interaction of a single two-level atom with a
single-mode field

5.2.1 Probability amplitude method

Consider the interaction of a single-mode radiation field of frequency
v with a two-level atom (Fig. 5.1). Let |a) and |b) represent the upper
and lower level states of the atom, i.e., they are eigenstates of the
unperturbed part of the Hamiltonian #, with the eigenvalues fhw,
and fiwy, respectively. The wave function of a two-level atom can be
written in the form

lp(®) = Ca(t)la) + Co(t)Ib), 21
where C, and C, are the probability amplitudes of finding the atom
in states |a) and |b), respectively. The corresponding Schrodinger
equation is

. i

[(6)) =~ KT (0), (522)
with

H =Ho+ K1, (5:23)
where #( and 4, represent the unperturbed and interaction parts
of the Hamiltonian, respectively. By using the completeness relation
la){a| + |b){b| =1, we can write #, as

Ho = (la)(al + |b){b])#o(la){al + |b)(b])

= hwgla){al + hwp|b) (b), (5.2.4)

where we use #|a) = fiw,|a) and #o|b) = hwy|b). Similarly, the part
of the Hamiltonian 4 that represents the interaction of the atom
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with the radiation field can be written as

Hy = —exE(t)
—e(|a)(al + |b)(bl)x(|a){al + |b)(b])E(z,t)

—(9avla) (bl + palb){a))E(t), (5.2.5)

where @ = @p, = e(alx|b) is the matrix element of the electric
dipole moment and E(t) is the field at the atom. Here, we assume that
the electric field is linearly polarized along the x-axis. In the dipole
approximation, the field can be expressed as

E(t) = & cosvt, (5.2.6)

where & is the amplitude and v = ck is the frequency of the field. The
equations of motion for the amplitudes C, and C, may be written as

C, = —iw,C, + iQre ™™ cos(vt)Cp, (52.7)
Cp = =i, Cy + iQre™ cos(vt)C,, (528

where the Rabi frequency Qp is defined as

Qp = _@%_W (5.2.9)

and ¢ is the phase of the dipole matrix element @y, = |@wq| €Xp(ig).
In order to solve for C, and C,, we first write the equations of motion
for the slowly varying amplitudes:

g = Coe®, (5.2.10)
cp = Cpe'™, (5.2.11)

It then follows from Egs. (5.2.7) and (5.2.8) that

R O
Ca= ~%m i
&y = m%m@@a\gslﬁ (5.2.13)

where v = w, — w, is the atomic transition frequency. In deriving
Egs. (5.2.12) and (5.2.13), we have ignored counter-rotating terms
proportional to exp[+i(w + v)t] on the right-hand side in the rotating-
wave approximation. This is generally a very good approximation.
Furthermore, in some cases the counter-rotating terms never ap-
pear (as seen later in section 5.2.3) and Egs. (5.2.12) and (5.2.13) are
exact.

cpe @, (5:2.12)
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Fig. 5.1

Interaction of a
two-level atom with a
single-mode field.
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The solutions for ¢, and ¢, can be written as

calt) = Asm_bﬁ ._.nwmlbﬁv &2,

chlt) = AFQEE + le.biv eit2,

(5.2.14)

(5.2.15)

where A=w —v,

Q= /0% +(@—v72 (5.2.16)

and aj, a;, b1, and b, are constants of integration which are determined
from the initial conditions:

a = — Tb — A)ca(0) + Qre™cy(0)] , (5.2.17)
H
@=35 [(Q + A)ca(0) — Qre ™ cs(0)] (5.2.18)
1
by = 0 [(Q + A)ep(0) + Qrec,(0)] (5.2.19)
by = Fp [(Q — A)ey(0) — Qre™®ca(0))] - (5.2.20)
We then have
(973 A, [
ca(t) = Tkov TomA 3 V oy WEAW:
iwméie mEAQ v Tﬁz\m (5.2.21)
Q 2
cp(t) = < ¢p(0) [cos % + m sin %
+i2R g e (0) mEAEV Tlsﬁ. (5.2.22)
Q 2
It is not difficult to verify that
lea() + lep(t)]* = (52.23)
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which is a simple statement of the conservation of probability since
the atom is in state |a) or |b).

If we assume that the atom is initially in the state |a) then c,(0) =
1, cp(0) = 0. The probabilities of the atom being in states |a) and |b)
at time t are then given by |c,(t)]> and |cy(t)|>. The inversion is given
by

W (1) = lea(t) — les(t)?
AP—QEN\ ., Qt
= AIIDNIV sin A > v + cos’ A > v (5.224)
Under the action of the incident field, a dipole moment is induced

between the two atomic levels. This induced dipole moment is given
by the expectation value of the dipole moment operator

P(t) = e(p(t)Irlp(t)) = C;Chpap + CC. = CichPare™" + c.C.
(5.2.25)

On substituting Eqs. (5.2.21) and (5.2.22) into Eq. (5.2.25), we obtain,
for an atom initially in the upper level,

P(1)

_ iQr Qt iAN L (D . [t io vt
INWoﬁ 0 %%Tomm Nv._. DmEA 2 v_ mEA Nv e

(5.2.26)

The dipole moment therefore oscillates with the frequency of the
incident field.
In the special case when the atom is at resonance with the incident
field (A = 0), we get Q = Qg and
W (t) = cos(Qrt). (5.2.27)
The inversion oscillates between —1 and 1 at a frequency Qg (see Fig.
5.2).

In 1937, Rabi considered the problem of a spin-1/2 magnetic dipole
undergoing precessions in a magnetic field and obtained an expression
for the probability that a spin-1/2 atom incident on a Stern—Gerlach
apparatus would be flipped from the (3) or (}) state to the () or (;)
state, respectively, by an applied radio-frequency magnetic field. In the
present problem, the atom undergoes a Rabi ‘flopping’ between the
upper and lower levels under the action of the electromagnetic field in
complete analogy with the spin-1/2 system.
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Fig. 5.2

Oscillations of the
population inversion
W(t) as a function of
time.
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5.2.2 Interaction picture

Consider the Schrédinger equation

0 i

= =—-K . 5.2.28

2V (O) = =3 H|w() (5-2.28)
This equation can be integrated formally to give

lw(t)) = U®)lp(0)), (5.2.29)
where the unitary time-evolution operator is defined by

U@ = |w§q$ (5.2.30)
and U(0) = 1.

A useful approach to the atom—field interaction problem exists in
the interaction picture in which we assign to the state vector the time
dependence due only to the interaction energy. This is accomplished

by defining the state vector |y;) in the interaction picture via
(1) = Ug(0)lp(e)). (5.231)

where
Us(t) = exp Alw\\av . (5.2.32)

It then follows that
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] ] ]

%§ST;M£37§3+£3%§eV (52.33)
and hence, from Egs. (5.2.28), (5.2.31), and (5.2.32), we obtain

3 .

5 10r() = =¥ Ol ). (5234)
Here

V(1) = Ul (t)# 1 Uo(t), (5.2.35)

is the interaction picture Hamiltonian. An operator O in the
Schrodinger picture will accordingly transform as

01(t) = Ul (t)OUq(t). (5.2.36)
This can be seen from the expectation value
(0) = (w(®)Olp(v)
= (Wi (0T Uo(t) p1(1))
= (pr(®I0r(®) w1 (D). (5.2.37)
A formal solution of Eq. (5.2.34) is
lwr(t)) = Ur()ly1(0)), (52.38)
where
Ur(t) = 7 ex Tw \“ ;\\A:&# (5.2.39)
I p iy 2.

is the time-evolution operator in the interaction picture, and J is the
time-ordering operator, which is a shorthand notation for

.ot
T exp Iw\ ;\\E&L
h Jo
i i 2t t
"Hll.\km_;\\Aa_vn_'Al{v ,\&S.\, duy ()Y (t2) +...
h 0 h 0 0

(5.2.40)

In order to demonstrate the usefulness of the above formalism, we
consider the interaction of a two-level atom with a monochromatic
field of frequency v. The Hamiltonian for this problem is given by
Egs. (5.2.3), (5.2.4), and (5.2.5). It follows, on using

H = (hwa)"a){al + (he)"|b) (b, (5.2.41)
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that
Uo(t) = exp Alwﬂvﬁonv
= exp(—iw,t)|a){al + exp(—iwyt)|b)(b|. (5.2.42)
For an atom at z = 0, the interaction picture Hamiltonian is, therefore,

>
=
I

—hQRUL(t)(€7"%|a)(b| + € |b)(a])Uo(t) cos vt
R (161 (bl + 1) ale™

e P la) (bl + e b)(ale O], (5243)

where A = @w —v. The terms proportional to exp[+i(w + v){] vary
very rapidly and their average over a time scale larger than 1/v
is zero. These terms can therefore be neglected in the rotating-wave
approximation. The simplified interaction picture Hamiltonian is

[FAWIIAY 18D AAN
107441} » (J.4.44)

where we assume resonance, A = 0. The time-evolution operator in
the interaction picture Uj(t) can be obtained simply from Eq. (5.2.39)
by using

HQR\ > .
(0 = A%v (1a)(al + 1) ()"
mbw 2n+1 ] )
i =~ qv (e7|a)(b] + €*[b)(al).  (5.2.45)
The resulting expression for Uj(t) is
Qgt . [ Qgt
Ui (t) = cos Alwxlv (la){al + |b)(b]) + isin A%v (e7%|a)(b|
+€?|b)(al) . (5.2.46)
If the atom is initially in the excited state (|p(0)) = |a)),
lw(t)) = Ur(t)la)
= cos A%v la) + isin A%v ¢?|b), (5.2.47)
and we obtain the probability amplitudes
Q
ca(t) = {al) = cos % , (5.2.48a)
cp(t) = (b|p) = isin A%v e, (5.2.48b)

in agreement with Egs. (5.2.21) and (5.2.22).
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E@) m=-
Left-circularly
polarized light

Y, (1)

5.2.3 Beyond the rotating-wave approximation

In quantum optics, the so-called rotating-wave approximation, as dis-
cussed in connection with Eq. (5.2.13), is frequently encountered. Of
course, it is a very good approximation and amounts to keeping only
energy-conserving terms in the Hamiltonian,

Moreover, as we show here, there are situations in which it is “exact”,
i.e., for all practical purposes the ‘counter-rotating terms’ never show
up. Consider the case of a hydrogen atom in a strong magnetic field
interacting with a monochromatic field as shown in Fig. 5.3. If the
levels are sharp and well separated, we may focus on only the two
levels, see Problem 5.7, for which

Palr) = ———— L (x — iy) exp(—r/2a0), (5.2492)
imfﬂmw %o
pp(r) = ! exp(—r/ao), (5.2.49b)
na

where qg is the Bohr radius.

Using the dipole approximation (see Section 5.1.2) and placing the
atom at the origin so that R = 0, we have the interaction picture
Hamiltonian

= —er(t) - E(t), (5.2.50a)

where

1(t) = e 0irem %ot (5.2.50b)

Fig. 5.3

Figure illustrating an
incident electric field
interacting with a
hydrogen (Rydberg)
atom such that the
energy difference
€m=1 — €3 is much
larger than

€Em=—1 — €p.
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and therefore
V() = —erg(t) - E(t) = —ergy, - E()e'", (5.2.51a)
Vpalt) = —erpy(t) - E(t) = —erp, - E(t)e ™, (5.2.51b)

where o is the atomic frequency.
Now, for the case of linear polarization in which

E(t) = %8 cosvt, (5.2.52)
Egs. (5.2.51a, 5.2.51b) and (5.2.52) imply

V a(t) = —exqp& cos vte'™
—_ mxﬁ.m ﬁ dorton mi.?rsi
~ é?%ﬁ.:;%, (5.2.53)

and likewise
Y ba(t) = —exp,& cOs Ve

o _ -

H Imxgw T:Tex + @rxisi

~ |§gmm_.:\§. (5.2.54)

Thus we make the rotating-wave approximation in neglecting counter
terms that go like exp[+i(w + v)i].

Now consider the case of left-circular polarization (LCP), which

connects P4(r) and yy(r), as given by Egs. (5.2.49). The electric field is

given by

E(t) = X cosvt — §& sin vt. (5.2.55)
Equations (5.2.53) and (5.2.54) now take the form

¥ ap(t) = —e& (Xap CO8 VE + yap sin vit)e™* (5.2.56a)

¥ ba(t) = —€& (Xpa COS VI + ypq sinvt)e (5.2.56b)

where, in view of Eqs. (5.2.49a) and (5.2.49b), we can write

exap H.\SMA_,vxei_,v& °, (5.2.57a)

&\%H\.GMEV\SZ:& —ip, (5.2.57b)

and similarly, exy, = @ and ey, = ig. Therefore Eqs. (5.2.56a) and

ala £ sntnn
».Q, 101111

(o]

Am.w.mmﬂv tne ;.ms__ﬂm
¥ w(t) = —p&(cosvt — isinvt)e” = —pde " (52.58a)
¥ ba(t) = —p& (cos vt + isinvt)e ™ = —p&e"?", (5.2.58b)

and the counter-rotating terms never appear.
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Finally, we note that although there are no counter terms of the form
et agsociated with the LCP light inducing Am = —1 transitions,
there are counter terms associated with LCP and transitions to a state
n=21=1m = +1, ie, Am = +1. Such transitions are usually said
to vanish due to angular momentum selection rules. Here they are
seen to ‘vanish’ since they go as counter rotating terms. That is, they
are allowed in the sense of an atom making a transition to an excited
state with the emission of a photon. Such terms can be much smaller
than the usual counter-rotating terms; see Problem 5.7.

5.3 Density matrix for a two-level atom”

For a given physical system, there exists a state vector |yp) which
contains all possible information about the system. If we want to

(O)am = (y[Olw). (53.1)

In many situations we may not know |p); we may only know the
probability P, that the system is in the state |). For such a situation,
we not only need to take the quantum mechanical average but also the
ensemble average over many identical systems that have been similarly
prepared. Instead of Eq. (5.3.1), we now have (see Section 3.1)

((0)om)ensembie = Tr(0Op), (5.3.2)
where the density operator p is defined by
p=>_ Pulw)yl (53.3)
P

It can be seen that
Tr(Op) = Tr(p0O). (5.3.4)

In the particular case where all P, are zero except the one for a state
o), then

P = [wo)(wol, (5.3.5)
and the state is called a pure state. It follows from the conservation
of probability that Tr(p) = 1. Also, for a pure state,

Tr(p?) = 1. (5.3.6)

* The more complete picture of stimulated emission as developed by Lamb and Scully [1971] is
found in Chapter I1I of Sargent, Scully and Lamb [1974].
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5.3.1 Equation of motion for the density matrix

We can obtain the equation of motion for the density matrix from the
Schrédinger equation,

) (5.3.7)

Taking the time derivative of p (Eq. (5.3.3)) we have

p =2 Py(l9)(wl + lw)wl), (5.3.8)
»
where P, is time independent. Using Eq. (5.3.7) to replace ) and (p
in Eq. (5.3.8) we get
, i
p=—5Hpl. (5.3.9)

Equation (5.3.9) is often called the Liouville or Von Neumann equa-
tion of motion for the density matrix. It is more general than the
Schrodinger equation since it uses the density operator instead of
a specific state vector and can therefore give statistical as well as
quantum mechanical information.

In Eq. (5.3.9), we have not included the decay of the atomic levels
due to spontaneous emission. The excited atomic levels can also decay
because of collisions and other phenomena. The finite lifetime of the
atomic levels can be described very well by adding phenomenological
decay terms to the density operator equation (5.3.9) (see also Problem
5.2).

The decay rates can be incorporated in Eq. (5.3.9) by a relaxation
matrix I', which is defined by the equation

(n|T|m) = yndum. (5.3.10)
With this addition, the density matrix equation of motion becomes
i

1
p= B [, p] — Mﬁjwbvu Amu_:

where {I',p} = I'p + pI'. In general, the relaxation processes are more
complicated.
The ijth matrix element of Eq. (5.3.11) is
, i 1
py=-7 M»UA,\\;\VSIP.E\N:VI 3 M»UAﬁ,%SL%sﬁ:v.a.w.Bv

This formula is useful in the treatment of many-level systems.
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5.3.2 Two-level atom

We now consider the two-level atomic system again where the state
of the system is a linear combination of states |a) and |b), ie., |p) =
C,la) + Cp|b). Then the density matrix operator can be written as

p=Iv)(w| = [Cat)la) + Co(t)Ib)] [Ca(tNal + Cy(1)(bI]
= |Cal*la){al + CaCyla)(b| + C+C;b){al + ICI*Ib){bI(5.3.13)

Taking the matrix elements, we get

Paa = {alpla) = |Ca(t) %, (5.3.14)
Pab = {alp|b) = Ca(t)Cy(2), (5.3.15)
Pba = Pabs (5.3.16)
pus = (blplb) = |Cy(t)*- (5.3.17)

The matrix form of the density operator is

banbaw
H . m.n:m
b AEE bgv ( )

It is obvious that p,, and pp, are the probabilities of being in
the upper and lower states, respectively. For the meaning of the off-
diagonal elements we need to remember that the atomic polarization,
see Eq. (5.2.25), of the two-level atom (at z) is

P(z,t) = CyCp 9pa + €.C. = pap(2, t)pa + C.C. (5.3.19)

So we see that the off-diagonal elements determine the atomic polar-
ization.

We could have found this form for p more directly from Eq. (5.3.5)
by remembering that in spinor notation

m=(g): w=@a. (5320)

Then by matrix multiplication

|p:|_9_woh
TASVAQ STAQQ o) (320

We can derive the equations of motion for the density matrix
elements from Eq. (5.3.12) with the Hamiltonian given by Eqgs. (5.2.4)
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and (5.2.5). The resulting equations are

Paa = —VaPaa + W_”%nwmb@n - O.O.f AmwNNv
i
Pbb = —YpPbb — M%&ﬂmbg —ccl, (5.3.23)
. i
pab = —(i> + Yab)pab — 7 PabE(Paa — Prs), (5.3.24)

where ygp = (Y4 +73)/2 with y, and y; defined by Eq. (5.3.10) and E(t)
is given by Eq. (5.2.6). In the rotating-wave approximation, cos(vt) is
replaced by exp(—ivt)/2 in Egs. (5.3.22)—(5.3.24).

5.3.3 Inclusion of elastic collisions between atoms

The physical interpretation of the elements of the density matrix
allows us to include in these equations terms associated with certain
processes. One such process is the elastic collision between atoms in a
gas.

In particular, during an atom—atom collision the energy levels ex-
perience random Stark shifts without a change of state and the decay
rate for pgp is increased without much change in y, and y,. The change
in the decay rate of p,, may be computed in a simple way as follows.

We assume that the random Stark shifts are included in Eq. (5.3.24)
by adding a random shift dw(t) to the energy difference w. Ignoring
the atom—field interactions for simplicity, we can write the equation of

motion for the density matrix element p,, as

Pap = —[ieo +id(t) + Vapl pap- (5.3.25)
Integrating Eq. (5.3.25) formally, we have

Pap(t) = exp ﬁlﬁe + Yap)t — N\og &mmSAmL pap(0). (5.3.26)

We now perform an ensemble average of (5.3.26) over the random
variations in dw(t). This average affects only the dw(t) factor, so that
we find (exp[—i f; d'So(1)]).

The function dw is as often positive as negative. Hence the ensemble
average (dw(t)) is zero. Furthermore, as the variations in dw(t) are
usually rapid compared to other changes which occur in times like
1/yap, we take

(dw(t)dw(t)) = 2ypmd(t — '), (5.3.27)

where yp, is a constant. We also assume that dw(t) is described by a
Gaussian random process, so that the well-known moment theorem
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of Gaussian processes is valid. Under these conditions we obtain

t
ASG T%\ &\QSQ\LV = exXp(—Ypht), (5.3.28)
0
which gives for the average of (5.3.26)

Pab(t) = expl—(i® + yab + ypn)t1pab(0). (5.3.29)

It follows, on differentiating this equation and including the interaction
term, that we have the modified equation of motion for pg:

. . i

pab =~ +1)put — 7 PubE(z,1) (Paa — P1o). (53.30)

where y = ya + ypn is the new decay rate. Equation (5.3.30) is an
average equation with respect to collisions.

5.4 Maxwell-Schrodinger equations

The interaction of a single atom with the single-mode field, which was
discussed in the previous sections, represents a simple, idealized system.
In many problems of interest in quantum optics, one is interested in
the interaction of the radiation field with a large number of atoms. The
prime example of such a system is a single-mode laser where atoms
pumped into the excited level interact with the electromagnetic field
inside a cavity . Other examples include coherent pulse propagation
and optical bistability.

In this section, we develop a mathematical framework to treat such
problems based on a self-consistent set of equations for the matter
and the field. This set of equations and its extensions enable us to
deal with many semiclassical problems where the atoms are treated
quantum mechanically and the field is treated classically.

In the present semiclassical atom—field interaction, the classical field
induces electric dipole moments in the medium according to the laws
of quantum mechanics. The density matrix is used to facilitate the sta-
tistical summations involved in obtaining the macroscopic polarization
of the medium for the individual dipole moments. The semiclassical
approach, though remarkably good for many problems of interest in
the study of a given system, is however inadequate to provide infor-
mation about the quantum statistical features of light. These aspects
will be presented in later chapters where the radiation field will be
treated quantum mechanically.
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5.4.1 Population matrix and its equation of motion

We consider the interaction of an electromagnetic field with a medium
which consists of two-level homogeneously broadened atoms. The in-
dividual atoms are described by the density operator (see Eqs. (5.3.14)~
(5.3.17))

Pz t,t0) = Y paplz 1, t0)l0) (B, (54.1)
o

where «, f = a,b and p,g(z,t, ty) are the density matrix elements for an
individual atom at time ¢ and position z, which starts interacting with
the field at an initial time ty. The initial time t; can be random. The
single-atom density matrix elements pys(z,t,ty) obey the equations of
motion (5.3.22), (5.3.23), and (5.3.30). If the state of the atom at the
time of injection is described by

plz o to) = 3 plglac) (Bl (54.2)
ap
then
Pap(z:to, o) = pl- (54.3)

The effect of all the atoms which are pumped at the rate r,(z, to)
atoms per second per unit volume is obtained by summing over initial
times. The resulting population matrix is defined as

bANWD = \ &HOﬁnAN~H0vbAN, F ~0v
=Y [ dtoratz, wpuptant i) B (5:44)
ap —©

Generally the excitation r,(z,ty) varies slowly and can be taken to
be a constant. The macroscopic polarization of the medium, P(z,t),
will be produced by an ensemble of atoms that arrive at z at time ¢,
regardless of their time of excitation, i.e.,

P(z.t) = \ dtora(z.t0) Tr[Pp(z. . 10)]

t
HMU \ dtora(z, to)pag(z, t, t0) @ gas (5.4.5)
of —®©

where § is the dipole moment operator and, in the second line, we
have substituted for p(z,t,ty) from Eq. (5.4.1). For a two-level atom,
with @4 = @, = $, We obtain

P(z,t) = plpap(z, t) + ccl]. (5.4.6)
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Thus the off-diagonal elements of the population matrix determine
the macroscopic polarization.

The equations of motion for the elements of the population matrix
p(z,t) can be obtained by taking the time derivative of Eq. (5.4.4) and
using Eqgs. (5.3.22), (5.3.23), and (5.3.30). For example, if the atoms
mR m:oogzw::% excited to levels |a) and |b) at a constant rate r,

Ab&. = bmw 0), we obtain

i
= Aa = YaPaa + 3 (9EPpa — €.C), (54.7)
) i
Pob = Ap — YoPob — m%@;bg —c.c.), (54.8)
, . i
pab = —(i® + y)pap — m%m (Paa — Pob)s (5.4.9)

where 4, = r,p® and 4, = :%Mom These equations for the two-level
atomic medium are coupled to the field E. The condition of self-
consistency requires that the equation of motion for the field E is
driven by the atomic population matrix elements. In the following
section, we derive such an equation for a single-mode running wave.

5.4.2 Maxwell’s equations for slowly varying field functions

The electromagnetic field radiation is described by Maxwell’s equa-
tions:

‘B
V-D=0, <meIM (5.4.10)
ov.mn __Nn L vi o \%a A 11N
V-B=0, VXH= e (5.4.11)
where
D=¢E+P, B=yH, J=0E. (5.4.12)

Here P is the macroscopic polarization of the medium. In order to
avoid a complicated boundary-value problem, we assume the presence
of a medium with conductivity ¢. This conductivity is intended to
take into account phenomenologically the linear losses due to any
absorbing background medium, and also those losses due to diffraction

and 3_1131 + smission. Combinineg the curl eg uations. takino the
s

:.E<.::EE:.<<E<:::m..<<§ :: :.E:m:.c
mvnaovzmﬁ ﬁ e derivatives, and using Eq. (5.4.12), we get the wave
equation
Vx(VXE)+ amm.f mmNHI i (5.4.13)
Hoogp THCOGe T THOGa -
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Fig. 5.4

Schematic diagram
of a laser in a
unidirectional ring
configuration.

A Gainmedium

The polarization P(r,t) thus acts as a source term in the equation for
the radiation field. We have in mind a situation in which the radiation
field interacts with two-level atoms inside a unidirectional ring cavity
as shown in Fig. 54. Usually both running waves exist inside the
cavity. The unidirectional situation is achieved by the insertion of a
device with high loss for one running wave. The variations in the
field intensity transverse to the laser axis are typically slowly varying
on the scale of the optical wavelength. Hence, we neglect the x- and
y-dependence of E, ie.,

E(r,t) = E(z,t)%. (5.4.14)
Equation (5.4.13) then reduces to
0’E 0E 1 0°E o*p

The field of frequency v is represented as a running wave
1 .
E(z,1) = 56(z, t)e~ kil 4 oo (5.4.16)

where &(z,t) and ¢(z,t) are slowly varying functions of position and
time with k = v/c. For the problem of laser oscillation, k = v./c where
v. is the cavity frequency. In general, &(z,t) is a complex function;
however, in the present and in the next section, we assume it to be
real.

If the field is written as in Eq. (5.4.16) then the response of the
medium, neglecting higher harmonics, is given by the polarization

P(z,t) = WEN, t)e ke oAl | oo (5.4.17)

where 2(z,t) is a slowly varying function of position and time.
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The slowly varying complex polarization #(z,t) is given in terms of
the population matrix by identification of the positive frequency parts
in Egs. (5.4.6) and (5.4.17):

P(z,1) = 2ppapetRiHeEI], (5.4.18)

The expressions for E(z,t) and P(z,t) are substituted from Egs. (5.4.16)
and (5.4.17) in Eq. (5.4.15), and the following approximations are made

o0& o8 o¢ a¢

Nﬂ AA<~%u M AA\Q%V M AAF mN AAF Amhﬁcv
oz <LV, m\& L k2. (5.4.20)
ot 0z

These slowly varying amplitude and phase approximations are justified
when &, ¢, and 2 do not change appreciably in an optical frequency
period. By noting that Eq. (5.4.15) can be rewritten as

o 19 d 129 oE P
A\+ -|v A|\ +-|v E=—uo s — oy (5421)

dz cot 0z cot
and
0 10 ~ A

AJIN + mwv ~ _DikE, (5.4.22)
we obtain

o0& 10¢€ 1

i T ngﬁa%v (5.4.23)

o9 10¢p v 1,

where k = 6/2¢gc is the linear loss coefficient.

Equations (5.4.7)—(5.4.9), (5.4.23), and (5.4.24) form a self-consistent
set of equations. This set of equations is the starting point of the study
of many systems involving the interaction of the radiation field with
an ensemble of atoms. The generalization of this set of equations to a
multi-level atomic system and a multi-mode field is straightforward.

As an important example of the applications of this set of equations,
we present the semiclassical theory of the laser in the next section.

5.5 Semiclassical laser theory

In this section, we first outline the basic principle of laser operation
and then present a theory of the laser as developed principally by
Lamb and co-workers. The threshold condition for a laser and the
evolution equation of the electromagnetic field is also derived.
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5.5.1 Basic principle

In 1954, Gordon, Zeiger, and Townes showed that coherent electro-
magnetic radiation can be generated in the radio frequency range by
the so-called maser (microwave amplification by stimulated emission
of radiation). The first maser action was observed in ammonia.

The maser principle was extended by Schawlow and Townes, and
also by Prokhorov, to the optical domain, thus obtaining a laser (light
amplification by stimulated emission of radiation). A laser consists of
a set of atoms interacting with an electromagnetic field inside a cavity.
The cavity supports only a specific set of modes corresponding to
a discrete sequence of eigenfrequencies. The active atoms, i.e., the
ones that are pumped to the upper level of the laser transition,
are in resonance with one of the eigenfrequencies of the cavity. A
resonant electromagnetic field gives rise to stimulated emission, and
the atoms transfer their excitation energy to the radiation field. The
emitted radiation is still at resonance. If the upper level is sufficiently
populated, this radiation gives rise to further transitions in other
atoms. In this way all the excitation energy of the atoms is transferred
to a single mode of the radiation field.

The first pulsed laser operation was demonstrated by Maiman in
ruby. The first continuous wave (cw) laser, a He-Ne gas laser, was
built by Javan. Since then, a large variety of systems have been
demonstrated to exhibit lasing action; generating coherent light over
a frequency domain ranging from infrared to ultraviolet. These include
dye lasers, chemical lasers, and semiconductor lasers. A new class of
lasers which uses electrons in a periodic magnetic field (called free-
electron lasers) has also been developed.

From our discussion of the laser principle, it is clear that a laser
theory should incorporate three basic elements, an active mediurfi
(two-level atoms with population inversion), pumping to the upper
lasing level, and the radiation losses due to the cavity. A systematic
semiclassical theory of the laser was developed by Lamb.

5.5.2 Lamb’s semiclassical theory

We consider the s

cons ser theory for t

linearly polarized m_aoﬁzo mmE in a cs_a:mo:osm_ ring cavity and
two-level homogeneously broadened, active atoms.
The time dependence of the electric field &(z,t) can be separated

from the spatial part by expanding the field in the normal modes

170 Atom—field interaction — semiclassical theory

of the cavity. In a ring cavity only certain discrete modes achieve
appreciable magnitude, namely, those with the frequencies
mmnc

Vi = 4%) = NAw:Qu AM.M.HV

where § is the circumference of the ring, m is a large integer (typically
of the order 10%), and k,, is the corresponding wave number. Here,
we consider a single mode with unidirectional (running-wave) mode
functions U(z) = exp(ikz) (Fig. 5.4).

The equations of motion for the field amplitude (5.4.23) and phase
(5.4.24) for the present problem reduce to

o0& 1 1
= =3%¢—5 Aulov Im#, (5.5.22)
w|w =Ve—v)— w Qlov & 'Re, (5.5.2b)

where v, is the cavity frequency and y = (y, + y5)/2. In Eq. (5.5.2a),
K has been replaced by €/2c where € = v./Q (where Q is the quality
factor of the cavity) to account for the field losses through the mirrors
of the cavity. The driving polarization 2 (Eq. (5.4.18)) is determined
by Eq. (5.4.9) which Em_am

P(z,1) = |% expl—y(t — ') — i(w — v)(t — )]

x &t %;m@ ) — pou(t)]dt’. (5.5.3)

The integral (5.5.3) can be simply performed, provided the amplitude
&(t') and the population difference p,, — pp» do not change appreciably
in the time 1/y, for then these terms can be factored outside the inte-
gral. This solution leads to rate equations for the atomic populations.
These approximations are exact in steady state (# = 0). This gives

_ = ? Paalt) — pob(t)
_ - 2 baaAD lbgAD

On substituting Eqs. (5.5.4) into the equations of motion for p,, and
pvpy ((5.4.7) and (5.4.8)), we obtain the rate equations

Paa = Aa — VaPaa — R(paa — pob); (5.5.5a)
Dby = Ap — VuPbb + R(Paa — pob), (5.5.5b)
where the rate constant is
1 [ p& 2 y
R==-("+—) ———. 5.
(%) rreow (556
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It is evident that the rate constant R, which determines the rate at
which the population difference varies in time, depends primarily on
the rate at which the total field intensity varies. Hence, the rate-
equation approximation consists of the assumption that the electric
field envelope varies slowly in atomic lifetimes. We can determine
the population difference in the steady state from Egs. (5.5.5). This
difference can be substituted in turn back into the equations for Im#
and Re#, thus determining the polarization components.

In the steady state (p,, = ppp = 0), Egs. (5.5.5) yield

Paa — Pbb = 1 +~/~\M\-llmg Ammqv

where No = A.y;1— A7, and Ry = y4y/2y. The population difference
is therefore given by Ny, which appears in the absence of the field,
divided by a factor which increases as the intensity of the electric field
increases.

Combining Eq. (5.5.7) with Egs. (5.5.4) and (5.5.2) we obtain the
amplitude and frequency determining equations

i s () 539
where V is the volume of the cavity and
2 2
B = Amwmrv Qﬁ.v - +AN|:N ANML (5.5.10b)

Here </ is the linear gain parameter and 4 is the saturation parameter.
We now define a dimensionless intensity

_ mo% Nﬁ\
T 2w
which corresponds to the ‘number of photons’ in the laser. (Here,
€062V /2 is the total energy in the laser beam and Av is the energy
associated with a single photon.) This statement will be sharpened
when we study the quantum theory of the laser in Chapter 11. It
follows from Eqgs. (5.5.8) and (5.5.9) that

n (5.5.11)

A=—%n+ Fw, (55.12)
HAT N:
M SR C it .1 (5.5.13)

(14 Zn)
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For small excitations (#n/.«/ < 1), a perturbation theory is obtained
by expanding the denominator in Egs. (5.5.12) and (5.5.13), resulting
in

h= (o —€)n— Bn’, (5.5.14)
w—V

<+$H<G+A 5 VA%\I&SV.

Equations (5.5.14) and (5.5.15) are the basic equations for the laser.
As shown below, they yield the laser threshold condition, the steady-
state and transient intensity of the laser, and the frequency pulling due
to the presence of the gain medium.

It is easily seen from Eq. (5.5.14) that, in steady state (7 =0),n =0
unless o > €. When o/ > €, the steady-state intensity is given by

o —F
_— 5.1
7 (5.5.16)

Thus, the laser threshold condition is o/ = ¥, i.e., when the gain is
equal to the cavity losses.

In Fig. 5.5, the steady-state intensity is plotted against the detuning
A = o —v. According to Eq. (5.5.15), the oscillation frequency v itself
depends on the intensity. A good approximation, however, results from
taking v = v, in the calculation of the various coefficients.

The frequency determining Eq. (5.5.15) predicts a pulling of the
oscillation frequency from the passive cavity frequency towards line

(5.5.15)

hhy=hn=
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center. Specifically, in steady state (¢ = 0)

ve + L
= —— . ¢H
v T (5.5.17)
where the stabilization factor
oA — B
g=TAm M (5.5.18)
<7 <7

Equation (5.5.17) can be interpreted as a center-of-mass equation in
which the oscillation frequency v assumes the average value of v, and
o with weights 1 and &, respectively. In the typical case, ¥ < 2y and
therefore v = v, but v is pulled closer to the atomic frequency . This
is called mode pulling.

5.6 A physical picture of stimulated emission and
absorption

In order to better appreciate the physics behind stimulated emission
and absorption, let us consider an atom at the point z = 0 interacting
with the field E(z,t) = &(z,t)cos(vt — kz). As before, the amplitudes
C, and C, are determined by Egs. (5.2.7) and (5.2.8), and the slowly
varying amplitudes ¢, = C,e/®' and ¢, = Cpe'™’ are determined by
Eqgs. (5.2.12) and (5.2.13), respectively. For simplicity, we assume exact
resonance A = w —v = 0. Then the solution (5.2.21)~(5.2.22) becomes

Qrt Q
calt) = T@ cos AJWV +icy(0)sin A%v_ (5.6.1a)
Qrt .
co(t) = T@SAINWV + ic(0) mamm%z, (5.6.1b)
where we have assumed a real dipole matrix element pq, = @5, = 0.

Now, to the lowest order, we may trivially calculate p,, = nanmal.ﬁ

for the cases of atom in the excited state and the ground state.

For the first case (stimulated emission), in which ¢,(0) = 1 and
¢p(0) = 0, we find to lowest order for an atom which passes through
the laser cavity in a time t

c (1) =1, (5.6.2a)

oplt) waﬁ (5.6.2b)
and the polarization is then (see Eq. (5.4.18))

P =20pae""

Il

—ipQgt. (5.6.3)
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For the case of absorption, initially ¢,(0) = 0, ¢,(0) = 1, to the
lowest order one gets

cq(T) = N.Dlwm, (5.6.4a)

() =1, (5.6.4b)
and

P X ipQg. (5.6.5)

Now, using Eq. (5.4.23), for the atom initially in the excited state we
have

166 k g
where we have neglected the cavity loss. It follows from Eq. (5.6.6)

that the change in the electric field during the time 1 is

A= 2 g (5.6.7)

i.e, the incident field experiences gain.
Likewise for the atom initially in the ground state, we have
106 _  k p*

— =———=§1, 5.6.8
c ot 2¢0 h ’ ( )

and therefore
A= - g (5.6.9)

ie., the incident field experiences loss. Thus the atom acts essentially
as a tiny oscillating electronic current induced by the incident light
field. Attenuation of an incident field is then the result of the radiation
from this current interfering destructively with the incident light (see
Fig. 5.6). This simple physical picture of stimulated emission and
absorption can be expanded to explain more complicated phenomena,
e.g., lasing without inversion, as we shall see in Section 7.3.1.

5.7 Time delay spectroscopy

In the previous section, we saw how simple and intuitively pleasing
the concepts of stimulated emission and absorption are when treated
within the framework of semiclassical radiation theory. As an example
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Fig. 5.6

(a) Emission:
induced dipole
radiation interferes
constructively with
incident radiation.
(b) Absorption:
induced dipole
radiation interferes
destructively with
incident radiation.
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of unusual and counter-intuitive physics within the framework of
semiclassical theory, we conclude this chapter with a discussion of
time delay spectroscopy.

In conventional spectroscopy, the limit of resolution of the energy
between two levels |a) and |b) is governed by the sum of the decay
rates y, and y, out of these levels.

In this section we present a spectroscopic technique which pro-
vides resolution beyond the natural linewidth. These considerations
are based on the fact that in the transient regime, the probability for
induced transitions in a two-level system interacting with a monochro-
matic electromagnetic field is not governed by a Lorentzian of width
(Ya+75)/2 = yab, but rather by (y,—ys)/2 = 4. The Lorentzian width
Yab, Which usually appears in atomic physics, is regained only in the
proper limits.

We proceed by considering the experimental situation in which an
ensemble of two-level atoms is excited at time ¢t = ¢, into the |b)
state by some ‘instantaneous’ excitation mechanism, e.g., a picosecond
optical pulse. The excited atoms are then driven by a monochromatic
but tunable radiation field.

Consider the level scheme illustrated in Fig. 5.7. There we see an
atom with two unstable levels |a) and |b) and a weak field driving the
atom from the lower level |b) to the upper level |a). If one includes
the lower levels (|c) and |d)) to which |a) and |b) decay, this may be
considered as a four-level atom. That is, we prepare the atom in level
|b) at to, drive the atom to level |a), and count the number of atoms
accumulating in level |c), starting a finite time ¢ after the atom is
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W\ g

8)

prepared. The counting rate is measured as a function of the detuning
between the laser and atomic frequencies.

We proceed by solving the density matrix equations of motion
(5.3.22)~(5.3.24) for p,,(t) to lowest nonvanishing order. This yields

Paa(t)
bm
— A2 +-m~ TI,}.:I“& + e T=10) _ 9~ vab(t=10) oo At — SL ,
ab
(5.7.1)

where 9z = (ya — 5)/2, Qr is the Rabi frequency of the driven
transition and A is the detuning between the laser and w,,. The key
point is that the Lorentzian factor in (5.7.1) goes as y, —y» nOt y4 + 5.

Now suppose we count the number of photons emitted when the
excited atom makes the |a) — |c) transition. This will be equal to the
total number of atoms accumulated in level |c) which is determined
by the simple rate equation

bnmAP NoV = ebanﬁu onu AMQNV

where the notation reminds us that the atoms are initially excited at
time ty. Then the total number of spontaneously emitted photons from
time fo to a time long after the initial excitation to level |b) is given by

0
N6 = | bt ol (5.13)

to

where 7 is a constant determined by the efficiency of photon detection.

Fig. 5.7

Level diagram
indicating excitation
of atom from ground
state to |b),
subsequent
interaction with
resonant radiation
promoting atom
from |b) to |a) with
atendant decays to
states |d) and |c) at
rates y, and 7,
respectively.
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Fig. 5.8

Time delay
spectroscopy signal
N(z) for different 7.
The different curves
have been
normalized for

cimnlicity Tn fact tha
U-—-—t»-(-—.k; 11 lavi e

peak heights of the
curves corresponding
to larger 7 are
strongly reduced as
indicated by

Eq. (5.7.6).
Nevertheless the line
narrowing can be
useful as discussed
by Figger and
Walther (1974).

2 -1 0 1 2
Ay,
Inserting (5.7.1) into (5.7.3) we find
2
N(8, 1) = ek b (5.7.4)

A%+ 92, vavs’

That is, when we carry out the above procedure, collecting the
la) — |c) photons from t, onwards we regain the usual Lorentzian of
width y,. This is reassuring since in most experiments it is indeed 1y,
that governs the resolution of our experiments.

However, let us now wait for a time ty + t before accepting any
counts. That is let us measure

00
N(Afo +17) = 7 \ paalA 1, t0)d. (5.7.5)

to+t

Inserting (5.7.1) into (5.7.5) we now find*

_ :ﬁnbw exp(—yat) | eXp(—ys7)
NAt, +1)= A2 +mmw ﬁ . + ~
4 28RV 4 G A7 —ycosAn)| . (57.6)

A 432
The point is clear. When we delay observation we find a line
narrowing as is seen by comparing Egs. (5.7.4) and (5.7.6). Equation
(5.7.6) is plotted for various values of time delay in Fig. 5.8.
We conclude by noting that, as pointed out explicitly by Figger
and Walther, the line narrowing in time delay spectroscopy provides a

* See Meystre, Scully, and Walther [1980].
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high spectral resolution in the sense that we can separate closely spaced
lines. However, this higher resolution does not always lead to a higher
experimental accuracy in the final result for the atomic transition
frequencies .. The reason for this is the exponential damping of the
signal with the time delay t by means of the prefactors exp(—y,t) and
exp(—ypt) in Eq. (5.7.6) which decrease the signal. We will return to
the question of enhancing spectroscopic resolution in later chapters,
e.g., in Section 21.7.

5.A Equivalence of the r - E and the p - A interaction
Hamiltonians

In Section 5.1 we noted that in the radiation gauge (R-gauge) and in
the dipole approximation (A(r,t), U(r,t)) = (A(t),0), the gauge trans-
formation

2, t) = |m>3 r (5.A.1)

yields the gauge (0, —E(t) - r). We observe that the gauge (0, —E(t) - r)
leads to the electric—dipole interaction # (Eq. (5.1.19)), and thus we
call it the electric field gauge (E-gauge). The two Hamiltonians #
(Eq. (5.1.19)) and #” (Eq. (5.1.21)) are therefore related via the gauge
transformation (5.A.1). A gauge transformation requires a transforma-
tion of the potentials according to Egs. (5.1.6) and (5.1.7) and of the
wave functions according to Eq. (5.1.4). Nonidentical, wrong results
are obtained for physically measurable quantities in different gauges if
only one of these two transformations is carried out. We will discuss
how we have to handle the wave functions in the two different gauges
in order to obtain gauge-invariant physical predictions. Before this,
however, let us briefly discuss some examples of physical quantities.

5.A.1 Form-invariant physical quantities

A form-invariant physical quantity is defined as a quantity whose
corresponding operator G, = G(4,, U,) is form invariant under a
unitary transformation T'(r,t) = explix(r, t)], ie.,

e T Tt
I \Jy1

— {8
Uy = X ) |-

AN
nazy

where the wave function in the gauge x is transformed to the gauge
¥ by the unitary transformation

Wy (r, 1) = T(x, By, (x, 1), (5.A3)
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The difference between physical and nonphysical quantities lies in the
gauge invariance of the eigenvalues. The eigenvalues of a physical
quantity are identical in all gauges, whereas the eigenvalues of non-
physical quantities depend on the chosen gauge. In order to show this,
we denote the eigenvalues and eigenstates of the operator G, by g,
and |&,,), respectively:

Qx_mxsv = gnl&yn)- (5.A4)

Only for physical quantities are the eigenvalues g, gauge invariant,
ie.,

QN‘_me_v = N,Qx.uiu.._mx_:v
= ﬂmz_mxk_v
= gnlym)- (5.A.5)

Hence, nonphysical quantities can only be used as calculational tools.
We next consider some examples of physical and nonphysical quan-
tities. The starting point for these considerations is the fact that the
operators r and p (p = —ihV), associated with the position and the
canonical momentum of the particle, are the same in all gauges, by
which we mean that p is represented by —ifiV in all gauges. This
ensures that, in any gauge, the commutation relation [rj, pi] = ihidj is
satisfied. With this rule the operator for the mechanical momentum,

T, = p— eA,(r,1), (5.A.6)
is a physical, measurable quantity since
Tr, T = T[p— eA,(r, )] T"
=p—eA, —hVy
=p—eAy
=7y (5.A.7)
Similarly, the instantaneous energy operator of the system, consisting

of the kinetic energy and the static potential (normally the atomic
binding potential)

&, = Lp- eA,(r,1))> + V(r), (5.A8)
2m
represents a physical quantity as well as any other operator which is
only a function of other physical quantities like 7,.
On the other hand, the canonical momentum p is not a physical

quantity since

TpT  =p—HhVy#p. (5.A.9)
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In a similar way, the operator #¢ = p?>/2m (which does not depend
on potentials) is not a physical quantity because

h h?
THoT" = Ho—o-[p-Vi+(V2) P+ 5 (V)" # Ho(5.A.10)

In general, any operator which is a function of nonphysical quantities
alone, like the canonical momentum p or the vector or the scalar
potentials A, or U,, represents a nonphysical quantity. The total
Hamiltonian

Hy= W: [p— eA,(r, 01 + eUy(r, 1) + V(r) (5.ALL)

is also a nonphysical quantity, since it depends on the scalar potential
U,.

We therefore conclude that the time evolution of a physical system
is determined by Hamiltonians such as 5, or #, which in general are
not observable quantities. The physical quantities are, for example, the
mechanical momentum and the instantaneous energy of the system.

5.A.2 Transition probabilities in a two-level atom

In this subsection we restrict the discussion to the large-wavelength
dipole approximation (LWA) in which A may be considered to be
independent of r, ie., A(r,t) = A(t). Since the energy operator &, (as
given by Eq. (5.A.8)) is time dependent, its eigenstates |o,(t)), where
o = a,b, and its eigenvalues E, = hw, are also time dependent in
general, namely

& 1o, (t)) = Egloty (1)), (5.A.12)

However, in the LWA the eigenvalues of &, are time independent.
This can be seen with the help of the gauge transformation (5.A.1). In
the LWA

ieA(t) -1
h

exp [ A enoexp [T - 2 sty

so that

.>. .N.
exp |WMPH &, exp Wﬁ = #,. (5.A.14)

The eigenstate |o,) is then related to the eigenstate |a(t)) of #, by

loy) = exp ﬁ@%I:Q la(2)), (5.A.15)
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and the eigenvalues E, of &, coincide with the time-independent
eigenvalues E, of s since the eigenvalues of physical quantities are
gauge independent.

In the E-gauge the unperturbed energy operator &g is equal to
the unperturbed Hamiltonian 5. Hence the eigenstates of #, are
also the eigenstates of &g. Therefore, only in the E-gauge is the wave
function expanded in terms of energy eigenstates, and the coefficients
c(t), where a = a,b, in Egs. (5.2.10) and (5.2.11) are interpreted as
probability amplitudes for finding the system in an eigenstate of the
observable energy. In any other gauge, 5# is a nonphysical quantity
and its eigenstates are not the energy eigenstates of the system. The
expansion coefficients ¢,(t) in Egs. (5.2.10) and (5.2.11) are then the
probability amplitudes for finding the system in an eigenstate of .
However, if 5 is a nonphysical quantity, this probability is gauge
dependent and has to be distinguished from the measurable, gauge-
invariant probability of finding the system in an energy eigenstate.

1t is. therefore. nseful to exnand the wave function of the system in

AU 15, LACICIONC, USCIUL 10 Capdali( L1C :s

terms of eigenstates of the energy operator &,
[0,(1)) = dalt)e™|ay) + dy(t)e™ |b,). (5.A.16)

The expansion coefficients d, and d; then coincide with the probability
amplitudes for transitions of the system to the eigenstates |a,) and
|b,), respectively of the energy operator &, with energies fico, and hicw,:

da(t) = {aylp, (1)), (5.A.17)
dy(t) = (bylp,(1))e™". (5.A.18)

We will now show explicitly that these amplitudes are gauge in-
variant.
In the E-gauge, the probability amplitude d,(t) is given by

dE(1) = (a|Uo(t)U{ (1) b)e (5.A.19)
and, in the R-gauge, by
dx()
ie (2) ie iwat
= {(a|exp Im.ﬁa 1| Ug(t)U,”(t) exp MZS ‘x| |bye' e,
(5.A.20)

where Uy(t) = exp(—is#ot/h) and

U9 = 7 exp I / BUOr U] A2))
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Here, we assume that the atom is initially in the ground state |b).
Similar expressions exist for the amplitudes dZ(t) and dX(t). In the
first order of perturbation theory, the time-evolution operator QS
becomes

UV =1-- \ drU}(1)#1Uo(1), (5.A.22)

and the probability amplitude of the excited state in the E-gauge takes
the form

Il

0=~ al [ a0 Voo

t
{alr|b) \ drel@)r
0

m_.? —1
A

It

Loty ) (5.A23)

T 2h

This result is now compared to the corresponding result in the R-
gauge. In first-order perturbation theory,

d¥(t) = (a| T - WZNV; Uo(?) T - W \o dtU{ () #,Uo(t)

x H+m>§; 1) expliat). (5.A.24)

Using (5.1.26) and (5.2.32) and A(t) = 3/e™", to lowest order in 7,
yields

ic of —i(o—v)t __ 1
&W:v = |R - | —Tap€ o= + Pab ¢

) + .

i(w—v)
From (5.1.30) we have p,, = +imwr,, and defining & = iv.e/ yields

&.?l#

dR(t)= % Fop—4— (5.A.25)

R iR/

Thus, the amplitudes d_(z) and 4, () are seen to be identical. This
resolves® the apparent contradiction pointed out at the end of Section
5.1.

* The present treatment is oversimplified in that the effects of atomic decay are not included. For
the more general case, see Lamb, Schlicher and Scully [1987].
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5.B Vector model of the density matrix

A physical picture of the density matrix is provided by reducing Eqs.
(5.3.22), (5.3.23), and (5.3.30) into a form equivalent to the Bloch
equations appearing in nuclear magnetic resonance. The present prob-
lem of a two-level atom interacting with an electromagnetic field is
similar to that of a spin-1/2 magnetic dipole undergoing precession
in a magnetic field. This formal similarity has led to the prediction,
observation, and physical understanding of a number of phenomena
associated with coherent pulse propagation in a system of two-level
atoms.
We introduce the real quantities

R = bn@w:; +c.c., Amw:
R; = &bn@mr; +c.c., (5.B.2)
R3 = pag — pib. (5-B.3)

These quantities are components of the vector R, given by
R = R;&; + Ry&; + R3é;. (5.B4)

where &;, &, and &; form a set of mutually perpendicular unit vectors.
Here, R; and R, represent the atom’s dipole moment, and Rj is the
population difference between the levels |a) and |b).

It follows from Egs. (5.3.22), (5.3.23), and (5.3.30) that, in the
rotating-wave approximation, (with ¢ = 0)

Ry =—AR, — Fw: (5.B.5)
T
Ry=AR; — ﬂ%@ + QrR3, (5.B.6)
2
: 1
Ry = ——R; — QrRy, (5.B.7)
Ty

where we have assumed y, =y, = 1/T; and y = 1/T>. The quantities
Ty and T, are called the longitudinal and the transverse relaxation
times, respectively, in analogy with the corresponding quantities in
the Bloch equations. Equations (5.B.5)-(5.B.7) are referred to as the
optical Bloch equations.

When T; = T,, these equations can be written in the following
compact form

R= !W—w +R x Q, (5.B.8)
T1

where the effective field is given by
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Q = Qré; — A&;. (5.B.9)

The time dependence of R, as given by Eq. (5.B.8), is well known
from classical mechanics. The vector R precesses clockwise about
the effective field Q with diminishing amplitude. The precessions for
resonance and slightly off resonance are depicted in Fig. 5.9. Physically
R pointing along & (R; = 1, Ry = Ry = 0) represents a system in
its upper level, p,, = 1, pp, = 0. Similarly, R pointing along —&;
represents a system in its lower level.

5.C Quasimode laser physics based on the modes of
the universe”

Most laser theories, e.g., that of Section 5.5, describe the electromag-
netic field in terms of a discrete set of quasimodes of the laser cavity,
each of which has a finite quality factor Q. In the present section,
this theory is generalized for a laser with a cavity modeled by a semi-
transparent wall as one of the mirrors so that there are now many
modes of the ‘universe’ corresponding to each quasimode. Here we
show that the normal modes of the universe associated with a single
‘mode’ may, under proper conditions, lock together and the d-function
laser lineshape may be regained.

We consider the normal modes for a combined system of a laser
cavity coupled to the outside world. We represent the ‘universe’ by
a much larger cavity having perfectly reflecting walls. A simple one-
dimensional model which carries the essential features of such a com-
bined system is illustrated in Fig. 5.10. The mirrors at z = L and —L
are completely reflective, while the one at z = 0 is semitransparent.
Region 1 corresponds to a laser cavity and region 2 to the rest of the
universe.

We represent a semitransparent mirror by a very thin plate with a
very large dielectric constant. As an idealization of such a mirror we
choose the dielectric constant around z = 0 to be

€(z) = eoll +1d(2)], (5.C.1)

ﬁ&onm:mwmmmSBQoHiEEn&Boswwoso:msmﬁriaoraognamsnm
the transparency of this plate.

The normal mode functions of this system can be obtained by
solving Maxwell’s equations with the proper boundary conditions (see
Problem 5.6). For those normal modes having frequency vi(= ck) close

* For further reading, see Lang, Scully and Lamb [1973].
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Fig. 5.9

Precession of Bloch
vector R about the
effective field Q for
(a) A=0and

(b) A#£0.

to a ‘resonant’ frequency vo(= cko), the eigenfunctions of the entire
cavity are

M, sink(z — L)
Ersink(z + L)

(z>0),

(z <0), (5.C2)

Ui(z) = ﬁ

where &, is a phase factor which alternates between 1 and —1 as k
increases from one value to the next. The coefficients My in (5.C.2) are
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Region 1

Region 2

-L, 0 L

A

> (5.C.3)

2 —1/2
My = @M% ,

Ts —v) + 4

where € is the bandwidth associated with the mirror transparency and
is given by

% = 2c/n*kEL = 2c/A’L, (5.C4)
with

A = nvy/c = nko, (5.C.5)
and the frequency vy of the nth quasimode is given by

vo = cko = (nm + 1/A)c/L. (5.C.6)

An arbitrary undriven field in the entire cavity can be expressed as
the positive frequency part of the field

EVz0) =) 6OUE™ =) 60Uz, (5.0
k k

which is to be understood as a sum over modes of the large cavity,
ie., ‘the universe’,

We now demonstrate that the semitransparency of the mirror leads
to a damping of free oscillations in the laser cavity. Let us assume
that, at ¢t = 0, the laser cavity (region 1) contains a field of the form

E™M(z,0) = |&ole™ sinko(z — L), (5.C.8)

whereas no field exists outside the cavity, ie., in region 2. The coeffi-
cients &(0) for this case are obtained by multiplying (5.C.8) by Uy(z)
defined in (5.C.2) and integrating over z. We find

Ex(t) = (|€o| My L/ Lo)e™x+9), (5.C9)
Therefore at later times, ¢ > 0,

E(z,1) = (|60lL/Lo) Y My Ui(z)e™0x+),
k

(5.C.10)

Fig. 5.10

Leaky cavity
bounded by a perfect
mirror at z = L and
a semitransparent
mirror at z = 0. The
auxiliary cavity
which, along with the
leaky cavity,
constitutes the
universe, is bounded
by a perfect mirror
atz = |ho Aho — Sv
and the mirror at
z=0.
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The summation can be approximated by an integral if the frequency
separation between the normal modes is small compared to €. Carry-
ing out the integration over k in (5.C.10), the explicit form of E(z,t)
in the maser cavity turns out to be

EM(z2,0) = | &0 sinko(z — L)e™(t+0)=6t/2, (5.C.11)

Equation (5.C.11) indicates that the field localized in the maser cavity
decays exponentially owing to leakage through the mirror at a rate
%/2.

Problems

5.1 Show that the Schrodinger equation (5.1.5) is invariant under
local gauge transformations (5.1.4), (5.1.6), and (5.1.7).

5.2 The finite lifetime of the atomic levels can be described by
adding phenomenological decay terms to the probability am-
plitude equations (5.2.12) and (5.2.13):

Q.

Cy= I.Wﬁa + %@I&vn?
O,

&y = lw@ + %mg?

where y is the decay constant and w = v. For an atom initially
in the state |a), show that the inversion at time ¢ is

W(t) = e cos(Qrt).
5.3 Find the solution of Eq. (5.B.8) (with T1 — o0):
R=RxQ
for R(0) = 0. Give a physical interpretation of this solution.
54 Show that, in general,
Tr(p*) < 1,

where the equality is valid only for a pure state.
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55

5.6

5.7

Consider a three-level atom interacting with a classical field
of frequency v. The transitions |a) — |b) and |b) — |c) are
allowed whereas the transition |a) — |c) is forbidden. It is
also assumed that w, — w, = wp — @, = v. Assuming the
atom to be initially in level |c), find the probabilities for the
atom to be in levels |a) and |c) after making the rotating-wave
approximation.

The electromagnetic field in the entire cavity (region 1 and
region 2 in Fig. 5.10) is governed by the Maxwell wave equa-
tion

8’E &’E
a2 poeo[l + cwﬁmv_% =0,

where E can be written as
E = Q:NVQIEZ.
(a) Find Ui(z) in the form (5.C.2) and prove that

M? tan?kL + 1

¢ tan’kL+ (AtankL — 1)’

where A is given by Eq. (5.C.5). Derive Eq. (5.C.3).
(b) Show that

L
vk — v )? dzUi(z)Up(2)e(z) = 0,
~Lo

where e(z) = €o[1 + #d(z)]. (Hint: see R. Lang, M.
O. Scully, and W. E. Lamb, Jr., Phys. Rev. A 7, 1788
(1973).)

The m = +1 level of Fig. 5.3 is weakly coupled to the y,(r)
level by the left-circular polarized light of Eq. (5.2.55) via
counter rotating terms. Note that in such a case (m =0 to
m = +1) we normally rule out such coupling on the grounds
that right-circularly polarized light is needed for the m =0 to
m = +1 transition.



Problems

189

(a) Show that if we define

(b)

Yo (1) = Y2 i=1m=+1(F)
= n(x + iy)e™/*,

where 7 is the uninteresting constant [y/64nadao] 1,
then

V ap(t) = Im%\,&nﬁ“?vn (kcosvt — ysinvit)

iyt

pa(r)e
- |%Q%®28=§+5n.

Show, by specific example, that the counter terms
associated with the |b) — |@’) transitions, which go
like [wgp 4+ v]~' can be much smaller than the usual
counter terms [w, + v]~!. Hint: consider a Rydberg
atom in which w,, = wyp = 10°Hz. If we now apply
a field of around 10* Gauss, we could arrange for the
Zeeman shifted w,, ~ 10°Hz while 0, ~ 10'°Hz.
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CHAPTER 6

Atom—field interaction —
quantum theory

In the preceding chapters concerning the interaction of a radiation field
with matter, we assumed the field to be classical. In many situations
this assumption is valid. There are, however, many instances where
a classical field fails to explain experimentally observed results and a
quantized description of the field is required. This is, for example, true
of spontaneous emission in an atomic system which was described
phenomenologically in Chapter 5. For a rigorous treatment of the
atomic level decay in free space, we need to consider the interaction
of the atom with the vacuum modes of the universe. Even in the
simplest system involving the interaction of a single-mode radiation
field with a single two-level atom, the predictions for the dynamics of
the atom are quite different in the semiclassical theory and the fully
quantum theory. In the absence of the decay process, the semiclassical
theory predicts Rabi oscillations for the atomic inversion whereas the
quantum theory predicts certain collapse and revival phenomena due
to the quantum aspects of the field. These interesting quantum field
theoretical predictions have been experimentally verified.

In this chapter we discuss the interaction of the quantized radiation
field with the two-level atomic system described by a Hamiltonian in
the dipole and the rotating-wave approximations. For a single-mode
field it reduces to a particularly simple form. This is a very interest-
ing Hamiltonian in quantum optics for several reasons. First, it can
be solved exactly for arbitrary coupling constants and exhibits some
true quantum dynamical effects such as collapse followed by periodic
revivals of the atomic inversion. Second, it provides the simplest il-
lustration of spontaneous emission and thus explains the effects of
various kinds of quantum statistics of the field in more complicated
systems such as a micromaser and a laser, which we shall study in
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later chapters. Third, and perhaps most importantly,” it has become
possible to realize it experimentally through the spectacular advances
in the development of high-Q microwave cavities.

The spontaneous decay of an atomic level is treated by considering
the interaction of the two-level atom with the modes of the universe in
the vacuum state. We examine the state of the field that is generated
in the process of emission of a quantum of energy equal to the energy
difference between the atomic levels. Such a state may be regarded as
a single-photon state.

6.1 Atom—field interaction Hamiltonian

The interaction of a radiation field E with a single-electron atom can be
described by the following Hamiltonian in the dipole approximation:

H =Hq+ Hr—erE (6.1.1)

Here o 4 and #F are the energies of the atom and the radiation field,
respectively, in the absence of the interaction, and r is the position
vector of the electron. In the dipole approximation, the field is assumed
to be uniform over the whole atom.

The energy of the free field #F is given in terms of the creation
and destruction operators by

oy = i) (jl (6.13)

As before {|i)} represents a complete set of atomic energy eigenstates,
ie, 3, ]i)(il = 1. It then follows from the eigenvalue equation # 4|i) =
E;)i) that

Ha= Eli)il = Eoy (6.1.4)
Also
er =" eli)ilrlj) (il = Y 0y0ij (6.15)
iJ ij

* Especially the micromaser of H, Walther and coworkers as discussed in Chapter 13. See also
the Physics Today article by Haroche and Kleppner [1989] which presents the physics of cavity
QED very nicely.
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where g;; = e(ilr|j) is the electric-dipole transition matrix element.
The electric field operator is evaluated in the dipole approximation at
the position of the point atom. It follows from Eq. (1.1.27) that, for
the atom at the origin, we have

E=) &dbua+ad}), (6.1.6)
k

where &x = (hivi./2¢€ ﬂxv: 2. Here, for simplicity, we have taken a linear
polarization basis and the polarization unit vectors to be real.

It now follows, on substituting for #f, # 4,er, and E from Egs.
(6.12), (6.1.4), (6.1.5), and (6.1.6) into Eq. (6.1.1), that

H = Mmsma.hsﬁ + MUNNSN +h MU Mwch.ﬁar + a._Uu (6.1.7)
k i L k
where
. e
= -2 A, (618)

In Eq. (6.1.7), we have omitted the zero-point energy from the first
term. For the sake of simplicity, we will assume g;; to be real through-
out this chapter.

We now proceed to the case of a two-level atom. For pu = 044, we
write

&= gl =g (6.19)
The following form of the Hamiltonian is obtained

H = M hviayay + (EaGaq + Eybp)
k

+1 " (0w + Obe)(ax + af). (6.1.10)
k

The second term in Eq. (6.1.10) can be rewritten as
1 1
E 04 + Epoppy = M meﬁa.aa|o.w$+ Mﬁmnlfmvv, Ammmmv

where we use (E, — E;) = hiw and 6,4, + oy, = 1. The constant energy
term (E, + E;)/2 can be ignored. If we use the notation

0; = Gay — app = |a){a] — |b)(b], (6.1.12)
o1 =ag = |a){bl, (6.1.13)
o_ = apy = |b){al, (6.1.14)

the Hamiltonian (6.1.10) takes the form
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1

%"M msﬂmﬁaw._. >
k

oo, +hY_ gu(or+o_)ax+af). (6.1.15)
k

It follows from the identity
o1, o] = oudji — o ;0u, (6.1.16)

that ¢,,0_, and o, satisfy the spin-1/2 algebra of the Pauli matrices,
ie.,

[o-,01] =—0, (6.1.17)
[6_,0;]=20_. (6.1.18)

In the matrix notation, 6_,0,, and g, are given by

00 1 1 0
Q|HAHOV, Q+HAmov, QNHAOI_V. (6.1.19)

The o_ operator takes an atom in the upper state into the lower state
whereas o takes an atom in the lower state into the upper state.

The interaction energy in Eq. (6.1.15) consists of four terms. The
term ajo_ describes the process in which the atom is taken from the
upper state into the lower state and a photon of mode k is created.
The term axo . describes the opposite process. The energy is conserved
in both the processes. The term ayo_ describes the process in which
the atom makes a transition from the upper to the lower level and a
photon is annihilated, resulting in the loss of approximately 2k in
energy. Similarly a_ﬁq+ results in the gain of 2hiw. Dropping the energy
nonconserving terms corresponds to the rotating-wave approximation.
The resulting simplified Hamiltonian is

1
# =Y hvala + 5hwo: +h ) gu(orax +afo_). (61.20)
k k

This form of the Hamiltonian describing the interaction of a single
two-level atom with a multi-mode field is the starting point of many
calculations in the field of quantum optics.

6.2 Interaction of a single two-level atom with a
single-mode field

It follows from Eq. (6.1.20) that the interaction of a single-mode
quantized field of frequency v with a single two-level atom is described
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by the Hamiltonian

H =Ho+ H), (62.1)
where

Ho=hvala+ w hwa,, 6.2.2)

#H1=hglosa +.a:l. (6.2.3)

Here we have removed the subscript from the coupling constant g.
The Hamiltonian, given by Egs. (6.2.1)-(6.2.3), describes the atom~field
interaction in the dipole and rotating-wave approximations. As we
show below, this important Hamiltonian of quantum optics provides
us with an exactly solvable example of the field-matter interaction.

It is convenient to work in the interaction picture. The Hamiltonian,
in the interaction picture, is given by

V= g e KR, (6.2.4)

Using
2

¢ Be=4 = B + oA, B] + WE, [4,B]] +..., (6.2.5)

it can be readily seen that
&:&E&ml:&& - amlzﬂ (6.2.6)

%S?QMQ?QISEN“\N = Q+®m8~. Amwﬂv
Combining Egs. (6.2.1)-(6.2.3), (6.2.4), (6.2.6), and (6.2.7), we have

V" = hig(cyae™ + ato_e™ ), (6.2.8)

where A=w —v.

In this section, we present three different but equivalent methods
to solve for the evolution of the atom-field system described by the
Hamiltonian (6.2.1)-(6.2.3) based on the solutions of the probability
amplitudes, the Heisenberg field and atomic operators, and the unitary
time-evolution operator.

6.2.1 Probability amplitude method

We first proceed to solve the equation of motion for |y), ie.,

d
im0 _ . (6.29)
ot
At any time t, the state vector |p(z)) is a linear combination of the

states |a,n) and |b,n). Here |a,n) is the state in which the atom is in



